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ON THE STABILITY OF STATIONARY MOTIONS OF ROTATING ROTOR AXIS 
MOUNTED ON NONLINEAR BEARINGS* 

D.R. MERKIN 

Stability of the steady motions of the axis of an unbalanced rotating rotor wieh 
perfect and imperfect motors is studied under the assmption that the reaction of 
elastically complaint bearings increases with increasing deformation. All basic 
parameters of the steady motions and their points of bifurcation are determined. It 
is shown that en imperfect motor can have a destabilizing influence. The results 
obtained are applicable to the case of a plane parallel motion of a rotating rotor 
on an isotropic, inertialess nonlinearly flexible shaft. 

1. We consider a perfectly rigid rotor of mass mwith vertical axis of rotation, mounted 
on elastically compliant bearings fixed rigidly on an immobile foundation. We assume thatthe 
rotor, the eccentricity of which is e = OC, moves in plane parallel manner, and the charact- 
eristic rotation about the axis Oat constant frequency ois executed by a perfect motor (motor 
of infinite power). The bearing reactions which are generally nonlinear, are reduced to the 
resultant F,(p) depending on the radial displacement p = 0,Oof the rotor axis and directed 
along the straight line 001 towards the point 0,of intersection of the plane of motion of 
the center of mass C with the axis of the undeformed bearings /l-S/. Physical considerations 
imply that any reaction F,(p) must vanish when p = 0 and increase with increasing p within 
the admissible limits of deformation of the bearings, i.e. the following conditionsmusthold: 

F, (0) = 0, dF,idp > 0 (1.1) 

We also assume that the derivative d2Foldpz is continuous within the same limits. The condi- 
tions can be satisfied by the rigid, as well as the soft elastic compliance of the bearings. 

When the external reaction forces are absent, the differential equations of motion have 
the form /6/ 

p" - p’psa - de cos (ot - cp) = -F (p), F (p) = F, (p)/m 
(1.2) 

prp” + 2p’(p’ - co2e sin (ot - cp) = 0 

where cp is the angle between the segment 0,O and the fixed z-axis. From the above equations 
we see that under the above assumptions all possible steady motions (cylindrical precessions) 

p = r = const, cp' = const (1.3) 

take place, in contrast to the balanced rotor (e = 0) , firstly only in the rectilinear direc- 
tion, and secondly at a single frequency 9' equal to the characteristic rotation frequency (I). 
The conclusion remains valid for any reaction forces depending on p,p’ and cp’. The constants 
r and y = ot- cp satisfy the equations 

ro2 $ eo2 cos y = F (r), sin y = 0 (1.4) 

The second equation yields two roots, (~7~ = 0 and y2 = n), which have the correspond- 
ing two forms of the stationary motions. In both forms all three points, 01,0 and C lie on 
a single straight line rotating about the O,-axis at the frequency 0. In the first form 
(pL = 0) the axis of rotation of the rotor 0 lies between O1 and C; in the second form y2 = 
.-r) the center of mass lies between 0, and 0. Fig.1 depicts the approximate form of 
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the possible amplitude-frequency characteristics ( a is soft, b is linear, c and d are rigid 
elastic compliances). The skeleton curve denoted by the dashes 

w = x (r). x2 = F (r) r (1.5) 

separates the amplitude-frequency characteristics into two branches, the left branch for the 
first form (vl = 0) and the right branch for the second form (y, = a). 

Differentiating the first equation of (1.4) with respect to o, we obtain 

[F’ (r) -d] g = 20 (r + e) (1.6) 

where the upper sign corresponds to the first form of the stationary motion, and the lower 
sign to the second for (here and henceforth a prime denotes differentiation with respect to 

r). The equations (1.6) and (1.4) together yield relations determining the point Katwhich 
the tangent to the amplitude-frequency characteristics is parallel to the r-axis 

(r f e) F’ (r) = F (r), coz = F’ (r) (1.7) 

For the reaction F = apa , in particular, the point K is given by the coordinates 

r=ae, 
a-l C0=J/m 

Setting p = r + zlr q~ = ot - y, + 2, (j = 1,2) and using (1.2) and (1.4), we obtain the following 
equations of perturbed motion /6/: 

. . 
21 - Zorz,' + IF’ (r) - w’l z, = 2, (1.8) 

rzz '. f 2~2,’ + r [x’ (r) * co”1 z2 = Z, 

where 2, contains the variations and their derivatives with respect to time, or order higher 
than first. The equations have a typical gyroscopic structure. Applying the first Tomson- 
Tet-Chetaev theorem and the conditions of gyroscopic stabilization /7,0/ we study, employing 
the usual methods, the stability of the zero order solution of the linear part of the system 
(1.8). Here the specific analytic structure of the reaction F,(p) is of no importance, and 
we use the general condition (1.1) only. The segments of the amplitude-frequency character- 
istics (Fig.l), which have the corresponding stationary motions stable in the first approxi- 
mation, are shown with thick solid lines, while the stationary motions unstable at any Z, 
correspond to thin line segments. 

2. Let us now take into account the external reaction force F, = pmv, proportional to 
the first one, with the axis velocity of the order of O(p = const). The remaining conditions 
discussed in Sect.1 remain unchanged. The differential equations of motion now assume the 
form /6/ 

p" - p'p.2 - oze cos (ot - cp) = -F (p) - pp’ (2.1) 

pm" + 2p'(p' - o*e sin (cot - cp) = --pm' 

The constants r and y = wt - q satisfy the equations 

ro2 + em2 cos y = F (r), eoa2 sin y = pro (2.2) 

which define r and y as functions of 61. The equation can be reduced to the following equiv- 

alent form /6/: 

r2([x2(r) -ePJ2+ p*o*)=eW, tgy= PLO 
x2(r)- 02 

(2.3) 

From (2.2) or (2.3) it follows that y+n and r-+e as o-+00, which corresponds to 

the phenomenon of self-centering (which takes place also in the absence of external resist- 
ance, see Fig-l). The phenomenon has been studied in detail in /l- 3/ for the case of linear 
reactions E0 = Cp. The amplitude-frequency characteristics represent a continuous line lying 
between two open branches corresponding to the case p = 0. The point A of intersection of 
the amplitude-frequency characteristics (2.3) with the skeleton curve (1.5) is given by the 
equations 

rp=x(r)e, w=fr, .J = ; 
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THUS for the reaction F = apa we have, at point A, 

e 
0 

Fig.2 

Differentiating the equations (2.2) with respect to 0 and elim- 
inating dyido, we obtain 

fir 
([x2 (r) - d] [F’ (r) - d] + p%P} do = e [2F (r) e cos y + pzr*] (2.5) 

and using (2.2) and (2.5) we obtain 

4e2F” (r) - 4yVF (r) + p’r’ = 0 

the root of which determines the largest radius r of the preces- 
sion orbit, with the corresponding values of o and y given there- 
fore by (2.2). If the coefficient accompanying drldo 

a4 = [x2 (r) - 0’1 IF’ (r) - a21 +.p202 (2.6) 

has no real roots r = r (to), then the amplitude-frequency characteristics will have no tan- 
gents parallel to the r-axis, ortherwise such tangent exist. To illustrate this, Fig.2 de- 
picts the amplitude-frequency characteristics for the reaction F = ap” when I<u (2. The 
first case (absence of real roots a,)corresponds to the characteristics 2, and the second 
case by the characteristics 3. 

In the general case, when the reaction F(p) is nonlinear, the first equation of (2.3) 
has, for certain values of 0, several roots, although its structure clearly implies that for 
every value of the damping coefficient ,u = const a small value of the eccentricity e0 (P) cm 

always be found such, that when e< e. then the equation (2.3) will have a single positive 
root r = r(o) of the order 0 (4. Indeed, when p is given and 61 is arbitrary but fixed, the 
function 

uJ(r)= rf(r) - ewe, f (r) = Ylx'o-,?]a+ @P 

will depend only on r and the small parameter e, and f(r)>0 for all r,e and I( not simultan- 
eously all zero. We shall seek a root of the equation 0(r)= 0, i.e. of (2.3), in the form 
of a series in powers of e. We find 

Let us assume that the function m(r) has, at sufficiently small e, more than one root r(o). 
Then we shall have @(r.)<O at the minimum of the function 4,(r). The value of r* is found 
from the equation 

@' (rr) = f (r*) + r* f' (r*) = 0 

which is independent of e. Using r*= r.(e) obtained, we select a small value c(p,o)>O for 
which @((T,) >O. This can be done since the function CD depends continuously on e. When e=O, 
we have for all r>O@(1.)>0. The contradiction with a(~*)< 0 shows that for any o chosen a 
sufficiently small value e (P? w) can be found for which the equation (2.3) will have only one 
positive root r= r(e). We can choose as the limiting value of the eccentricity co(p), infc@,o) 
with 1,) E (0, 00). Sometimes the limiting value co(p) can be obtained explicitly. Thus, when 

F = apa (a > I), the coefficient a4 becomes 

=a= (,,=-' - 02) @,#- - 02) - @' 

The roots of this quadratic trinomial in P-1 and equation (2.3) together determine the points 
B and C at which the tangents to the amplitude-frequency characteristics are parallel to the 
r -axis. Equating the discriminant of this trinomial to zero and using (2.3), we obtain the 

value of the eccentricity en (P) at which the points Band C coincide 

e, = 2gL (a + I)% [ 2 _Jg_+ _y ‘@-1) 

and this implies that when e<eO, then every value of the frequency o has a corresponding 
single orbit of cylindrical precession (curve 7 in Fig.2), while e>e, has threeorbits (curve 
3) . 

Setting p = r -i z1 and T = wt - y + z2 (Q. are variations of the coordinates) we obtain 
from (2.1) the following equations of perturbed motion /6/: 
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(2.7: 

where Zj are terms containing zk and z~' of degree higher than the first. The characteristic 
equation of the system (2.7) reduces to the form 

h' + 2~x3 + [x' (r) + F’ (r) + 2w2 + p’l h” + (x2 (r) + 
F' (r) + 20~1 h + Ix* (r) - 0~1 [F’ (r) - 0~1 + pb = 0 

(2.3) 

By virtue of the condition (l.l), the Hurwitz determinant 

A3 = p? {[x2 (r) - F’ (r)l’ + 2 [x2 (r) + F’ (r)l (40~ + p2) 

and all coefficients of (2.8) except the last one, are always positive, therefore the station- 
ary motion will be asymptotically stable in P,P', 'p and cp' when a,> 0, where uI coincides 
with (2.6), and unstable when ~(0, neither assertion depending on the higher order terms. 
The equation a4 = 0 corresponds to the bifurcation points at which the tangents to the ampli- 
tude-frequency characteristics are parallel to the r-axis. For this reason we find that for 
the reaction F = apa the whole characteristics 2 and the segments OB and CD of the charact- 
eristics 3 (Fig.2) have the corresponding, asymptotically stable precessions, while the un- 
stable precessions correspond to the segment BC. Fig.3 depicts the character of variation 
in the orbit radius of the stationary motion when the natural frequency of rotation of the 
rotor increases (decreases) slowly, for the case e>e,, in the case of a soft (rigid) elastic 
compliance of the bearings (shown in Fig.3a and 3b respectively). Thus we find, for the rotor 

model in question, that for any reaction F,(p) 

YkE 

satisfying the general conditions (l.l), and 
under careful balancing when the eccentricity 
becomes smaller than its critical value co, 
the rapidly rotating rotor will offer a stable 
performanceunderthe most favorable condrtions 
of self-centering. When e>e and the zic- 
tion F0 (p) is nonlinear, then'the pressure !V 

w exerted on the bearings can reach, on 
ascending branch of the amplitude-frequency 

Fig.3 
characteristics, a consderable magnitude, even 
when the eccentricity is vanishingly small. 

Indeed, when F,, = a&/Z, the equation of the skeleton curve (1.5) assumes the form r = 04b” = 
m”04/a * Since we have 
that f"d, any 

r (w. e)> r (0, 0) = m20’/a,’ on the segment OA (Fig.2), it follows 
e# 0 the total pressure N = aor’/* on the bearings will satisfy the condition 

and this implies that the pressure Non the segement OA grows rapidly with increasing frequ- 
ency 0 of natural rotation of the rotor. 

3. Assumi ng, as before, that the rotor is unbalanced (e+O), the elastic reaction F,(p) 
of the bearings satisfies the general conditions (l.l), and the external reaction forces are 

the same as in Sect.2, we consider the case when the natural rotation of the rotor is realiz- 
ed by an imperfect motor (motor of finite power) generating, on the axis of rotation, the 

moment M,($') equal to the difference between the rotational moment L,($‘) and the moment of 
reaction forces H,($.)($ is the angle between the segment OC and the fixed r-axis /9/). 

The kinetic energy of the rotor is given by the equation . 

T = + (p’* + p*rp’T + nre$'[-p'sin($ -(p) f prp'coa($ - cp)] + +-iOvE 

where i, is the radius of inertia of the rotor relative to the axis of rotation 0. We use 

the second Lagrange's method to obtain the equation of motion (the third equation is trans- 

formed using the first two equations and represents, in the transformed form, a theorem on 
the change of angular momentum relative to the center of mass) 

P .a _ P'p'2 - eg'. sin (g - (p) - ecp'? cos (I& - (p) = -F (p)- pp’ 

VP** -/ 2p'(p' + e$" cos (0 - (p) - ecp’? sin (9 - cp) = - ppq” 

i,‘$” + [F (p) + pp.1 e sin (II, - (p) - pepcp’ co.3 (+ - cp) = M ($7 

(i,’ = i,? - e2, M (+‘) = M, (q-)/m) 

(3.1) 
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This shows that the stationary motions can be realized only under the condition that 

(3.2) 

The constants r, y,w and the moment ill (w) in the stationary motion are connected by the equa- 

tions 
TO? + eta? cos J. = F (r), cop sin y = prw, M ((0) =L @w (3.3) 

The first twoequations coincide with (2.21, the latter establishing the dependence of r and 
_J on win the case of a perfect motor. The last equation shows that when the motor is im- 
perfect and the reaction forces (P # 0) are present, then the angular velocity of the rotor 
in the steady state motion depends on the radius oxbit of the cylindrical precession the con- 
dition well known in the case of oscillating systems with nonlinear motor /9/. 

Setting lp - ($? = 6, p = r -j- ZI, 8 z y -im z2, $_ = (r) -: ZS? we obtain from (3.1) the following 
equations of perturbed motion: 

zl" + pz,' + IF' (r) - 6j'l 2, + 2ro.2,' + eo2 sin yz, - 

e sin ~z:~' - 28) (r + e cos ~).z:~ = Z, 

-2wz; - poz, $ ~-2~” + prz,’ + ew2 cos yz2 - (r + 

e cos 11) h’ + p-z3 = 2, 

(3.4) 

pe sin yz,’ + e IF’ (r) sin y - p61 cos yl z1 + per cos yz,’ _t 

e IF (r) cos y + pro sin v] zE + i,?z8’ + (k - per cos y) 5 = & 

in which sin y and 
The coefficient 

cosy are easily eliminated with help of the first two equations of (3.3). 

k = - (dMid$‘)~.,, > 0 (3.5) 

(For a motor intended to maintain a constant frequency of rotation, the derivative dMl@’ 
must be negative). When the reaction forces are absent (p = 0), the 
characteristics and two forms of cylindrical precession do not 

amplitude-frequency 
, according to (1.4) and (3.3), 

depend on the type of the motor, although the stability depends significantly on the fact 
whether a perfect or imperfect motor is used. Indeed, let us write the characteristic equa- 
tion forthe linear part of the system (3.41, and find the Hurwitz determinants 

A, = fkero2 (r f e)2, A, = f4k2esrwB (r f e)’ 

where the upper signs correspond to the first form (rl = 0) and the lower signs to the second 
form (y2 = n) of cylindrical precessions. From this we find that the second form of the stat- 
ionary motion is always unstable and cannot be therefore realized. Using the condition (1.1) 
and equations (1.61, we find the asymptotically stable in p, p-1 0, 0' and $'precessions of the 
first form (shown in Fig.4 with thick lines). Comparison of Figs.1 and 4 shows that at p = 0 
the application of an imperfect motor reduces appreciably the regions of stable precessicns, 
but simple stability which occurs with the perfect motor is replaced by the asymptotic stab- 
ility. When p = 0, the above conclusions hold for any nonlinear terms Zh-, any eccentricity 

e, any reaction F,(p) satisfying the general conditions (1.1) and for any imperfect motor 
for which the inequality (3.5) holds. 

Fig.4 

Analyzing the equations (3.4) we can establish the conditions which must be satisfied by 
the motor in order for the stationary motion of the rotor axis to be asymptotically stable at 

p# 0 over the whole amplitude-frequency characteristics. Clearly, for this to occur we must 
demand, before anything else, that the inequality e<e, holds. Thus, a careful balancing 
of the rotor appears to be the necessary condition for the reliability of the performance. 
Finally, the condition e<e, cannot always be realized in practice, therefore when the bear- 
ing reactions are nonlinear, the latter can be successfully placed, in many cases, in linear 
elastic assemblies eliminating the apperance of the reactions Nof the type (2.9). 
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